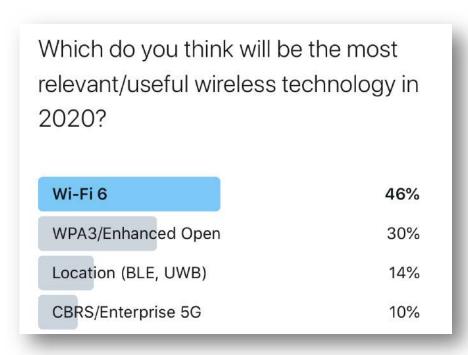
ULTRA-WIDEBAND & YOU!

Stephen Cooper - CWNE #276


@Stephen__Cooper

WHAT'S ON TAP FOR THE NEXT 30 MINUTES?

- What is Ultra-wideband (UWB)?
- How does UWB work?
- Use cases for UWB
- UWB product examples
- What's next for UWB?

APPLE U1 CHIP - IPHONE 11

- September 10, 2019 Apple-designed U1 TMKA75 UWB chip in iPhone 11
 - Enhanced AirDrop
 - Improved directionality
 - UWB now in the hands of the consumer!
 - ... but, what standard(s) does it comply to?!

Share. Find. Play. More precisely than ever.

Ultra Wideband technology comes to iPhone.

The new Apple-designed U1 chip uses Ultra Wideband technology for spatial awareness — allowing iPhone 11 to precisely locate other U1-equipped Apple devices. Think GPS at the scale of your living room. So if you want to share a file with someone using AirDrop, Just point your iPhone at theirs and they'll be first on the list.³

WHAT IS ULTRA-WIDEBAND?

• It is **not** this:

https://www.verizonwireless.com/support/5g-mobile-faqs/

WHAT IS ULTRA-WIDEBAND?

- Ultra-wideband (UWB) is a pulse radio technology used in the IEEE 802.15.14
 Low Rate Wireless Personal Area Network (LR-WPAN) standard*.
 - Definition: Radiation in which the 3dB bandwidth is at least 25% of its center frequency
 - Uses impulse radio with extremely short pulses (<2ns)
 - Has a very low power spectral density
 - Operates in the 3.1 to 10.6 GHz range
 - Uses very wide channels of at least 500 MHz
 - Data rates of up to 27 Mbps
- Enables measurement of the Time of Flight (ToF) of radio signals with sub-meter accuracy for ranging/location services and close-proximity communications.
 - *UWB is also specified in IEEE 802.15.6 Wireless Body Area Networks (WBANs)

WHAT PROBLEM IS UWB TRYING TO SOLVE?

- Ranging/Location Accuracy
 - Better accuracy and precision than Wi-Fi or traditional BLE for specific use cases
 - Radar applications/use cases
- Security
 - Operates in close proximity (a more secure alternative to NFC, vehicle access)
 - Relatively immune from interference and the effects of multipath
 - Protection from eavesdropping and relay attacks
 - More ideal for digital transactions and hands-free access control

HISTORY OF UWB

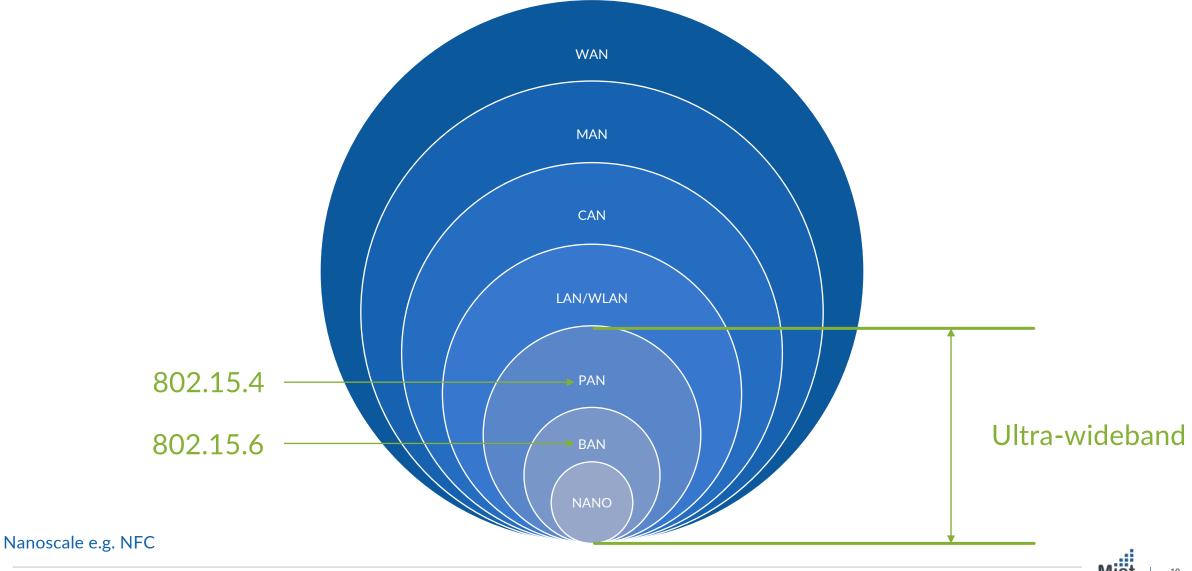
- UWB began it's modern life with short-range, high-speed data communications use cases
- In 2002 the FCC allowed UWB to communicate in an unlicensed fashion with strict spectral power density requirements in the 3.1 to 10.6 GHz bands.

Standard	Year	Data Rate	Band (GHz)	Modulation	PHY/Alliance	Use Case/benefits	
802.15.3a	2002-2006	<480 Mbps	3.1-10.6	MB-OFDM	WiMedia	WirelessHD	
802.15.4-2003	2003	Various	Various	Various	rious ZigBee, Thread etc Low rate, low pov		
802.15.4a	2007	<27 Mbps	<1 & 3.1-10.6	BPM & BPSK	SK IR-UWB (later HRP) Data, ranging		
802.15.4-2011	2011	(Mainly editorial changes to roll-up amendments)					
802.15.4f	2012	<1 Mbps	6.3-9.2	PPM, OOK	LRP-UWB	Active RFID	
802.15.4-2015	2015	<27 Mbps	<1 & 3.1-10.6	Various	HRP-UWB, LRP-UWB	Data, ranging, active RFID, access control	
802.15.6	2012, 2016	<12.6 Mbps	3.1-9.7	OOK, DPSK, FM	IR-UWB, FM-UWB	Wireless Body Area Networks (WBANs)	
802.15.4z	2018-	<27 Mbps	<1 & 3.1-10.6	Various	HRP-UWB & LRP-UWB; UWB Alliance, FiRa	Better ranging & security & power consumption	

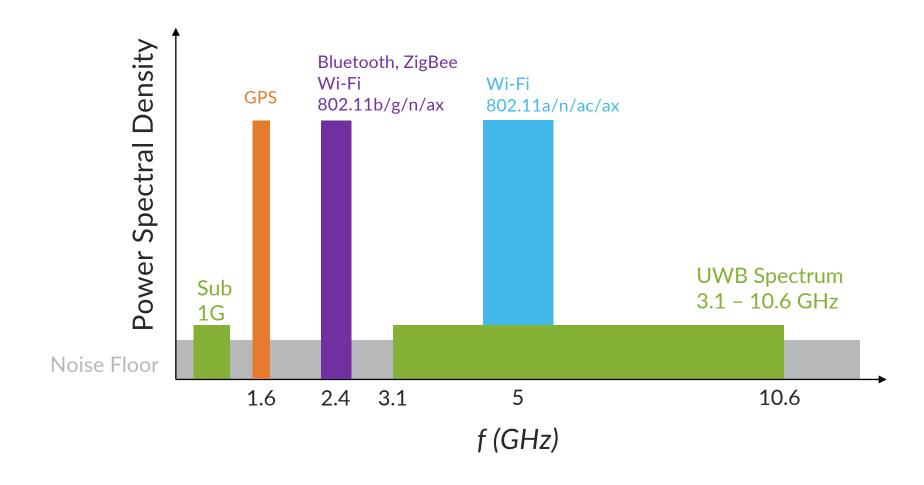
UWB BODIES

UWB Alliance

- Formed in December 2018.
- "The mission of the UWB Alliance is to be the voice of the designers and manufacturers committed to establishing ultra wideband (UWB) technology as a significant open standards industry."
- Members include: Hyundai, Kia, Zebra, Decawave*, Alteros**, Novelda, Ubisense, Denso, Analog Devices, Apple, Samsung.

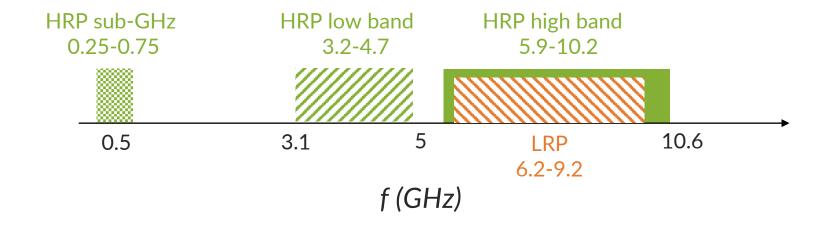

FiRa Consortium

- Formed 2019
- "Our vision is to provide seamless user experiences using the secured fine ranging and positioning capabilities of interoperable UWB technologies."
- Members include: NXP***, Samsung, Assa Abloy, Bosch, HID, Hyundai, Xiaomi, Tile, Denso.


HOW DOES UWB WORK?

- PHY bands, channels, regulations, modulation
 - HRP-UWB
 - LRP-UWB
- MAC channel access, frame format
- Ranging and Localization comparison of methods

UWB NETWORK CLASSIFICATION BY SPATIAL SCOPE



UWB SPECTRUM

UWB HRP & LRP PHY BANDS

HRP = high-rate PRF (pulse repetition frequency)

LRP = low-rate PRF

UWB HRP & LRP BANDS & CHANNELS

PHY	Band Group	Channel /Band #	Center Frequency (MHz)	Bandwidth (MHz)	Mandatory/Optional
	0	0	499.2	499.2	Mandatory below 1 GHz
		1	3494.4	499.2	Optional
	1	2	3993.6	499.2	Optional
	1	3	4492.8	499.2	Mandatory in low band
		4	3993.6	1331.2	Optional
		5	6489.6	499.2	Optional
		6	6988.8	499.2	Optional
HRP		7	6489.6	1081.6	Optional
HKP		8	7488.0	499.2	Optional
		9	7987.2	499.2	Mandatory in high band
	2	10	8486.4	499.2	Optional
		11	7987.2	1331.2	Optional
		12	8985.6	499.2	Optional
		13	9484.8	499.2	Optional
		14	9984.0	499.2	Optional
		15	9484.8	1354.97	Optional
		0	6489.6	1730.56	Optional
LRP	n/a	1	6988.8	2296.32	
		2	7987.2	2129.92	n/a

WHAT IS PULSE RADIO?

- Repeated transmissions short pulses of large bandwidth at a low power
 - Pulse repetition rates/frequency may be low or very high

- HRP-UWB higher repetition rates
 enable data communications use cases
- LRP-UWB lower repetition rates
 enable imaging and radar use cases

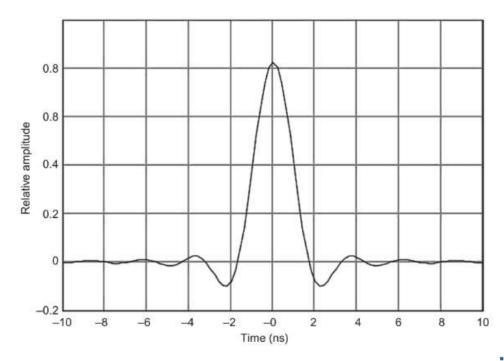


Image from: Short-range Wireless Communication, by Alan Bensky, 2019, pg. 355.

UWB RADIO REGULATIONS

• In 2002, the FCC approved of UWB in the 3.1 to 10.6 GHz range at a power spectral density of -41.3 dBm / MHz.

Country	License	Band (GHz)	Regulations Regulations Regulations
US	Unlicensed	3.1-10.6	Indoor only. Cannot be used in fixed outdoor environments.
Canada	Unlicensed	4.75-10.6	Indoor and handheld communications, vehicular radar, radar imaging applications.
Brazil	Unlicensed	3.1-10.6	Indoor communications, portable devices, medical imaging systems.
Europe	Unlicensed	3.1-10.6	Fixed indoor or mobile applications ETSI EN 302 065-1 Location tracking ETSI EN 302 065-2 (see UWB ETSI Location Tracking System Definitions next slide). Mitigation techniques required; and transmit power control required for road & rail applications.
Australia	Unlicensed	3.4-4.8, 6.0-8.4	In-ground UWB transmitters restricted to -62 dBm / MHz for 4.2-4.8 & 6.0-6.8 GHz. Must not be operated near radio-astronomy sites, nor onboard any aircraft, nor from any fixed outdoor location.
S. Korea	Unlicensed	3.1-4.8, 7.2-10.2	3.735-4.8 GHz band requires use of DAA or LDC mitigation techniques. Must not be used onboard aircraft, ships, or satellites.
Japan	Unlicensed	3.4-4.8, 7.25-10.25	3.4-4.2 GHz band requires a minimum data rate of 50 Mbps and the use of DAA mitigation techniques. 7.25-10.25 GHz band has neither of these restrictions.
Singapore	Unlicensed	3.4-9	Indoor only. 3.4-4.2 GHz restricted to -70 dBm / MHz. 4.2-4.8 GHz band requires the use of mitigation techniques.

Information from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883398/pdf/sensors-16-00707.pdf https://www.decawave.com/sites/default/files/apr001 uwb worldwide regulations summaryrev1.2.pdf

UWB ETSI LOCATION TRACKING SYSTEM DEFINITIONS

• ETSI EN 302 065-2 defines three types of location tracking systems:

System Type	Definition
LT1	6-9 GHz band for general location tracking of people and things. Can be used mobile (indoors or outdoors) or fixed (indoors only). Typically these are location tracking tags.
LT2	3.1-4.8 GHz band for people and object tracking as well as industrial applications at defined locations. Can be mobile or fixed, both indoor or outdoors. Operation at fixed sites and local coordination and authorization may be required to ensure there is no interference with other systems.
LAES	3.1-4.8 GHz band for locating and tracking personnel of the fire and emergency services; such as locating personnel within a building in an emergency situation.

• Transmitters of type LT1, LT2, and LAES are required to use mitigation techniques to prevent interference with other systems and devices.

Mis

UWB MITIGATION TECHNIQUES

Low Duty Cycle (LDC)

- Passive mitigation technique
- Limits the activity of the transmitter
- Maximum transmitter on time is 5 ms, and mean transmitter off time is at least 38 ms.

Detect And Avoid (DAA)

- Active Mitigation Technique
- Limits the Tx power, or defers transmission, if other transmissions are sensed (akin to Wi-Fi ED)
- Proximity to 'victim' system follows a zone model.
 - Different zones can have different threshold levels and corresponding Tx power levels.

HRP-UWB PHY SPECIFICATION

- The high rate pulse repetition frequency (HRP) UWB PHY consists of three frequency bands and is used for data communications up to 27 Mbps and precision two-way ranging/positioning.
- Each band has a mandatory channel support requirement, and channel bandwidths are typically 499.2 MHz but can be up to 1.3 GHz. Larger bandwidths have better multipath resistance and better ranging.
- Pulses are transmitted in bursts modulated by the polarity of the pulses (binary phase-shift keying, BPSK)
 and the position of the burst within a symbol period (burst position modulation, BPM).
 - Each symbol has two bits of information: one for the burst position, and one for the phase of the burst.
- Forward error correction (FEC) is performed using Reed-Solomon encoding on the PHY Protocol Data Unit (PPDU).
- Data rate is determined by number of pulses in a burst, preamble code length, modulation & coding rate, chips per burst & per symbol, symbol duration, and symbol rate 0.11, 0.85, 6.81, and 27.24 Mbps.

Mist

HRP-UWB DATA RATES

				Modulation & Coding				Data Symbol Structure						Data		
Channel Peak PRF Bumber MHz	Bandwidth MHz	Preamble Code Length	Viterbi Rate	RS Rate	Overall FEC Rate	#Burst Positions per Symbol N burst	# Hop Bursts N hop	# Chips Per Burst N _{cpb}	#Chips Per Symbol	Burst Duration T burst (ns)	Symbol Duration T _{dym} (ns)	Symbol Rate (MHz)	Bit Rate Mb/s	Mean PRF (MHz)		
	499.2	499.2	31	0.5	0.87	0.44	32	8	128	4096	256.41	8205.13	0.12	0.11	15.60	
{0:3, 5:6,	499.2	499.2	31	0.5	0.87	0.44	32	8	16	512	32.05	1025.64	0.98	0.85	15.60	
8:10, 12:14}	499.2	499.2	31	0.5	0.87	0.44	32	8	2	64	4.01	128.21	7.80	6.81	15.60	
	499.2	499.2	31	1	0.87	0.87	32	8	1	32	2.00	64.10	15.60	27.24	15.60	
	499.2	499.2	31	0.5	0.87	0.44	128	32	32	4096	64.10	8205.13	0.12	0.11	3.90	
{0:3, 5:6,	499.2	499.2	31	0.5	0.87	0.44	128	32	4	512	8.01	1025.64	0.98	0.85	3.90	
8:10, 12:14}	499.2	499.2	31	0.5	0.87	0.44	128	32	2	256	4.01	512.82	1.95	1.70	3.90	
2397 76	499.2	499.2	31	1	0.87	0.87	128	32	1	128	2.00	256.41	3.90	6.81	3.90	
	499.2	499.2	127	0.5	0.87	0.44	8	2	512	4096	1025.64	8205.13	0.12	0.11	62.40	
(0:3, 5:6,	499.2	499.2	127	0.5	0.87	0.44	8	2	64	512	128.21	1025.64	0.98	0.85	62.40	
8:10, 12:14}	499.2	499.2	127	0.5	0.87	0.44	8	2	8	64	16.03	128.21	7.80	6.81	62.40	
	499.2	499.2	127	0.5	0.87	0.44	8	2	2	16	4.01	32.05	31.20	27.24	62.40	
	499.2	1331.2	31	0.5	0.87	0.44	32	8	128	4096	256.41	8205.13	0.12	0.11	15.60	
See Chiconing	499.2	1331.2	31	0.5	0.87	0.44	32	8	16	512	32.05	1025.64	0.12	0.11	15.60	
{4, 11}	499.2	1331.2	31	0.5	0.87	0.44	32	8	2	64	4.01	128.21	7.80	6.81	15.60	
	499.2	1331.2	31	1	0.87	0.87	32	8	1	32	2.00	64.10	15.60	27.24	15.60	
	499.2	1331.2	127	0.5	0.87	0.44	8	2	512	4096	1025.64	8205.13	0.12	0.11	62.40	
	499.2	1331.2	127	0.5	0.87	0.44	8	2	64	512	128.21	1025.64	0.12	0.85	62.40	
{4, 11}	499.2	1331.2	127	0.5	0.87	0.44	8	2	8	64	16.03	128.21	7.80	6.81	62.40	
	499.2	1331.2	127	0.5	0.87	0.44	8	2	2	16	4.01	32.05	31.20	27.24	62.40	
	499.2	1081.6	31	0.5	0.87	0.44	32	8	128	4096	256.41	8205.13	0.12	0.11	15.60	
	499.2	1081.6	31	0.5	0.87	0.44	32	8	16	512	32.05	1025.64	0.12	0.85	15.60	
7	499.2	1081.6	31	0.5	0.87	0.44	32	8	2	64	4.01	128.21	7.80	6.81	15.60	
	499.2	1081.6	31	1	0.87	0.87	32	8	1	32	2.00	64.10	15.60	27.24	15.60	
	499.2	1081.6	127	0.5	0.87	0.44	8	2	512	4096	1025.64	8205.13	0.12	0.11	62.40	
72	499.2	1081.6	127	0.5	0.87	0.44	8	2	64	512	128.21	1025.64	0.98	0.85	62.40	
7	499.2	1081.6	127	0.5	0.87	0.44	8	2	8	64	16.03	128.21	7.80	6.81	62.40	
	499.2	1081.6	127	0.5	0.87	0.44	8	2	2	16	4.01	32.05	31.20	27.24	62.40	
	499.2	1354.97	31	0.5	0.87	0.44	32	8	128	4096	256.41	8205.13	0.12	0.11	15.60	
1.5	499.2	1354.97	31	0.5	0.87	0.44	32	8	16	512	32.05	1025.64	0.98	0.85	15.60	
15	499.2	1354.97	31	0.5	0.87	0.44	32	8	2	64	4.01	128.21	7.80	6.81	15.60	
	499.2	1354.97	31	1	0.87	0.87	32	8	1	32	2.00	64.10	15.60	27.24	15.60	
	499.2	1354.97	127	0.5	0.87	0.44	8	2	512	4096	1025.64	8205.13	0.12	0.11	62.40	
1.5	499.2	1354.97	127	0.5	0.87	0.44	8	2	64	512	128.21	1025.64	0.98	0.85	62.40	
15	499.2	1354.97	127	0.5	0.87	0.44	8	2	8	64	16.03	128.21	7.80	6.81	62.40	
	499.2	1354.97	127	0.5	0.87	0.44	8	2	2	16	4.01	32.05	31.20	27.24	62.40	

Juniper Public

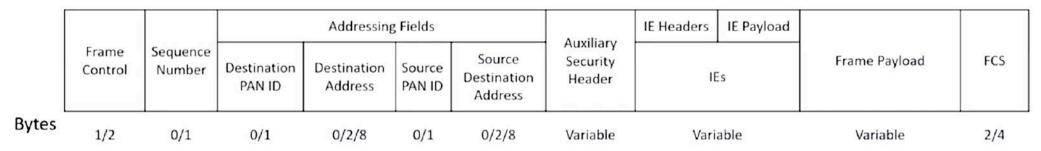
LRP-UWB PHY SPECIFICATION & DATA RATES

- The low rate pulse repetition frequency (LRP) UWB PHY consists of three channels corresponding to three transmission modes. LRP-UWB is used for RFID applications (and ranging in 802.15.4z).
- Either on-off keying (OOK) or pulse position modulation (PPM) is used to modulate the symbols depending on the mode of transmission. Symbols are composed of one or more bursts of UWB pulses.
 - Optional Location Enhancing Information postamble (LEIP) sequence of pulses at the defined PRF for measuring RTT to determine distance.
- Base mode highest data rate
- Extended mode balance of data rate and sensitivity
- Long-range mode best sensitivity

Mode	PRF (MHz)	DataRate as used in MCPS-DATA primitives	Data rate	Modulation
Long-range mode	2.0	1	31.25 kb/s	PPM
Extended mode	1.0	2	250 kb/s	OOK
Base mode	1.0	3	1 Mb/s	OOK

UWB CHANNEL ACCESS METHODS

802.15.4 Standard


- Validation of successful reception of a frame with an acknowledgement is optional.
- Access to the medium can be either scheduled or contention-based (ie random access).
 - CSMA-CA (slotted or unslotted) can be used.
 - ALOHA or slotted ALOHA mandatory for UWB as CCA is difficult on low-power UWB
 - Random Access, used by HRP-UWB & LRP-UWB for active RFID blink frames.

CCA

- HRP-UWB shall use one of the CCA modes defined in 802.15.4 PHY requirements (ie CSMA/CA or TDMA) or shall report a busy medium upon detecting a preamble symbol.
 - Channel can be used by multiple users as long as preamble code and PRF are different.
- HRP-UWB receiver energy detection (ED) measurement can input into DAA mitigation

UWB FRAMING

802.15.4 MAC Frame Format

- Data communication and distance measuring requires precise synchronization between terminals.
 - Synchronization preamble in HRP-UWB PPDU SHR header, constructed from one of two lengths of preamble code (either 31 or 127 symbols).

UWB ANTENNAS

- Distributed antennas
 - Increases transmission range
 - MIMO increases data rates
- Microstrip antennas
 - Low profile, low cost, easy to fabricate
- Wideband monopole
- Flexible wearable antennas for WBAN

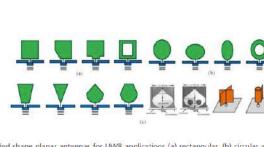


Figure 2. Modified shape planar antennas for UWB applications (a) rectangular, (b) circular and elliptical, (c) other

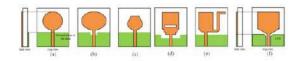
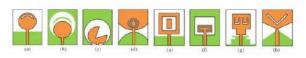
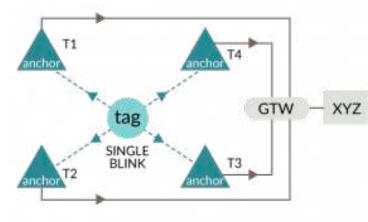


Figure 3. Planar PCB or printed antenna designs [8]-[20].



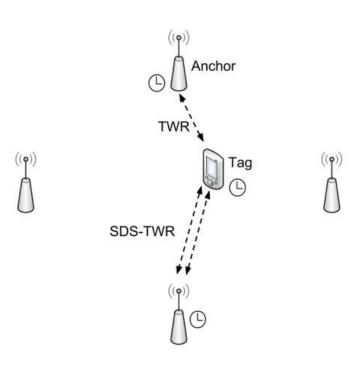

Figure 4. Printed antenna designs with single bandstop functions [21]-[28]

Mis

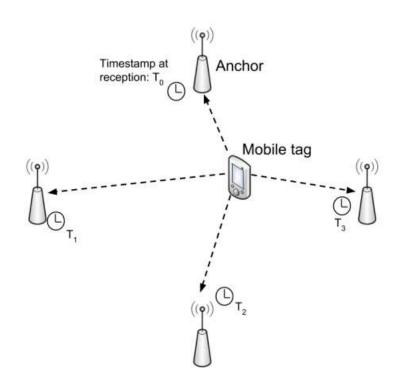
UWB RANGING & LOCALIZATION

- UWB Ranging and Localization Components
 - Anchor (fixed unit) measures location of mobile units
 - Tag (mobile unit) in motion
 - Location engine/server

Various algorithms for measurement



High Accuracy Location/Navigation Infrastructure-Based


COMPARISON OF UWB RANGING ALGORITHMS

Algorithm	Summary	Pros	Cons		
Two Way Ranging (TWR)	 Distance = ToF x (speed of light) Requires exchange of 3 messages between Anchor & Tag 	 Doesn't require time synchronization Two-way communications enables data & control 	 Requires knowledge of Anchor addressing, difficult to scale Coverage limited by distance to Master Anchor (<20m) Increased computation required, decreases battery life 		
Angle of Arrival (AoA)	 Measures position based on intersection of multiple signals 	 Lower requirement in terms of clock precision/synchronization 	Complex deployment requiring many antennas		
Phase Difference of Arrival (PDoA)	Combines TWR with bearing measurement	Less infrastructure requiredRelative positioning between two devices	Requires two antennasLocation error isn't constant		
Time Difference of Arrival (TDoA)	 Precise measurement of time difference between blink/beacon signals arriving to Anchors 	 Tag doesn't communicate directly with Anchors, so don't need to know addressing Improved battery life More scalable due to reduced configuration required 	Anchors require precise time synchronization		

COMPARISON OF UWB RANGING ALGORITHMS

Two Way Ranging (TWR)

Time Difference of Arrival (TDoA)

Juniper Public

UWB USE CASES

- Secure Access Control
 - Smart car access with smartphone for keyless entry and remote start
 - Can be combined with BLE for wake-up/initialization prior to secure ranging.
- Secure Wireless Payments
 - More secure than NFC, and can leave smartphone in pocket
- Location-based Services
 - Asset tracking in high density environments
 - Proximity of small objects
 - Sports & Fitness Tracking
 - Tracking of players and athletes on a field/arena
- Healthcare
 - Medical radar
 - Wireless health sensors (WBAN)

UWB USE CASES - FIRA CONSORTIUM

	Smart Home and Enterprises	Smart Cities and Mobility	Smart Transportation	Consumer	Smart Retail	Industry 4.0 and Healthcare
Hands-Free Access Control	Residential access control Restricted enterprise access	Parking garage Vehicle digital key (standardized by CCC)	Rider identification (private transport services)	Logical access control	Unmanned store access	Barrier-free and restricted access control
Location-Based Services	• Employee mustering in emergencies	• Bike sharing	 Ride sharing Reserved seat validation 	• AR gaming	 Indoor navigation Foot traffic and shopping behavior analytics 	Asset tracking Patient tracking
Device-to-Device (Peer-to-Peer) Applications	Conference systems	Drone-controlled delivery V2X*, autonomous driving	Ticket validation (public transport services)	VR gaming and group play Find someone nearby	Targeted marketing Tap-free remote payment	Proximity-based patient data sharing Find equipment

^{*}Connected Vehicle-to-Everything Communication

UWB PRODUCTS - RECOGNIZE THIS?

Belkin UWB CableFree USB Hub from 2006!

UWB PRODUCTS - LOCATION / ASSET TRACKING

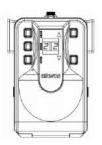
- Zebra UWB Solution
 - Virtual planning tool
 - ATEX & IS tags
 - Sport tracking

- Ubisense Dimension4
 - IP40/54/69K
 - Various form factors
 - TDoA + AoA

- Estimote Location UWB Beacon
 - BLE, UWB
 - Estimote Automapping
 - Uses TWR

- RealTrac
 - Underground mining
 - IP rated
 - APIs

- Humatics
 - REST API
 - Uses proprietary
 ALOHA & TDMA MAC.



UWB PRODUCTS - HEALTHCARE & AUDIO

- ARIA Sensing
 - "World's smallest UWB radar"
 - Detect gestures & breathing
 - Debuted at CES2020

- Alteros UWB Wireless Mic System
 - Operates at 6.5 GHz
 - Transceivers mesh together
 - TDMA used for channel access

- Estimote Location UWB Beacon
 - BLE, UWB
 - Estimote Automapping
 - Uses TWR

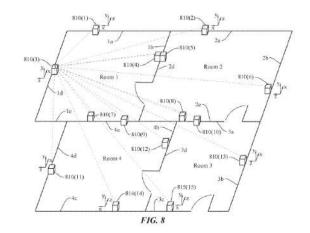
- Novelda/XeThru X4 UWB Radar
 - Sleep & respiration monitoring
 - Occupancy sensing
 - Inmate monitoring
 - HVAC, lighting, security

UWB PRODUCTS - SECURE ACCESS

- Continental + NXP
 - Secure vehicle access, digital key
 - Car Connectivity Consortium (CCC)
 - Debuted at CFS2020

- Volkswagen + NXP
 - Secure vehicle access, digital key
 - Car Connectivity Consortium (CCC)
 - Remote control parking, indoor navigation
 - Accessory mounting (ie trailer)
 - Debuted at CES2020

APPLE UWB & RADIO PATENTS


Refine Search IN/"	HAMMERSCHMIDT, Joachim*
PUB. APP. NO	. Title
1 20190273636	SECURE TRAINING SEQUENCE SYMBOL STRUCTURE
2 20190199398	TIME INSTANT REFERENCE FOR ULTRA WIDEBAND SYSTEMS
3 20190103661	Wireless Earphone Antennas
4 20190007093	Pulse Shaping Interoperability Protocol for Ultra Wideband Systems
5 20180097521	Method and Apparatus for Calibration of Voltage Controlled Oscillator
6 20180091340	MOST LIKELY ESTIMATION SYSTEMS AND METHODS FOR CODED GMSK
7 20180084456	Real-time Relay of Wireless Communications
8 20180048350	MULTIBAND BLUETOOTH
9 20130177891	AUDIO-VISUAL LEARNING SYSTEM
10 20120311173	Dynamic Wireless Channel Selection And Protocol Control For Streaming Media
11 20120309321	Synchronized calibration for wireless communication devices
12 20120307814	Polling using B-ACK for occasional back-channel traffic in VoWIFI applications
13 20120307746	Fair Channel Allocation for Multiple Clients
14 20110299618	MULTIPLE-BRANCH WIRELESS RECEIVER
15 20110051791	Methods and Systems for Calibrating for Gain and Phase Imbalance and Local Oscillator Feed-Through
16 <u>20100246656</u>	Methods and systems for soft-bit demapping
17 20090304124	REDUCED-COMPLEXITY MULTIPLE-INPUT, MULTIPLE-OUTPUT DETECTION
18 20090199076	ACKNOWLEDGEMENT MESSAGE MODIFICATION IN COMMUNICATION NETWORKS
19 20090143030	PROGRAMMABLE TRANSMITTER
20 20090117858	RECEIVE CONFIGURATION ADAPTATION FOR WIRELESS TRANSCEIVERS
21 20080310487	Single-chip wireless tranceiver
22 20080175189	TRANSMIT SCHEME ADAPTATION FOR WIRELESS DATA TRANSMISSIONS
23 20080130773	MULTIPLE-BRANCH WIRELESS RECEIVER
24 20070110180	Configurable bit interleaving
25 20070110178	Configurable de-interleaver design
26 20070077969	Maximum likelihood detection for MIMO receivers
27 20070036246	Methods and systems for soft-bit demapping
28 20070036245	Methods and systems for soft-bit demapping
29 20070025474	Receiver IQ imbalance calibration
30 20070025433	Methods and systems for calibrating for gain and phase imbalance and local oscillator feed-through
31 20070002878	Multiple protocol wireless communication baseband transceiver
32 20060291583	Programmable transmitter
33 20060269003	Method and apparatus for frequency domain compensation of DC offset in an orthogonal frequency division multiplexing system
34 20060253765	Acknowledgement message modification in communication networks
35 20060209994	MLD demapping using sub-metrics for soft-output MIMO detection and the like
36 20060209977	Global minimum-based MLD demapping for soft-output MIMO detection
37 20060104390	Reduced-complexity multiple-input, multiple-output detection
38 20050288062	Method and apparatus for selecting a transmission mode based upon packet size in a multiple antenna communication system
39 20050255815	Multiple-branch wireless receiver
40 20050163236	Transmission method and apparatus in a multiple antenna communication system
41 20040151146	Multi-branch OFDM transceiver
42 20040151145	Channel estimation for an OFDM transceiver
43 20030144032	Beam forming method
44 20030130012	Method and device for evaluating an uplink radio signal

 $Image\ from\ \underline{https://www.quora.com/What-is-the-new-Apple-U1-chip-and-why-is-it-important/answer/Brian-Roemmele\ @BrianRoemmele\ Delta and Delt$

APPLE UWB PATENTS AND USE CASES

- Peer-to-peer Services
 - AirDrop "So far we know the unlicensed UWB in the Apple iPhones transmits on two different frequencies - 6.24 GHz and 8.2368 GHz" (These are HRP-UWB Channels 5 and 10)
- Spatial/directional awareness (AR?)
- Asset Tracking
 - Find AirPods? AirTags?
- Apple HomeKit
 - Connected wall outlets/switches/controls
- Apple Health
 - Improved biometrics
 - New ecosystem of connected health sensors
- Apple Car??? iOS 13.4 enables CarKey API to lock/unlock/start

Quotation from https://www.ifixit.com/Teardown/iPhone+11+Pro+Max+Teardown/126000?utm_source=everythingrf

WHAT'S NEXT FOR UWB?

- Education
 - CWSA/CWISA, CWIP/CWICP
 - Shouldn't be focused on only a subset of 802.15.4 (i.e. ZigBee, Thread, LoRaWAN)
 - Many articles and papers on UWB, some out of date
- Standardization
 - 802.15.4z standard for secure ranging and access
 - 802.15.6 Wireless Body Area Networks
- Large Scale Adoption
 - Will Apple lead the charge?
- Openness
 - Apple developer ecosystem
 - Open APIs in existing UWB vendor products

LOCATION, LOCATION

- Bluetooth Low Energy
 - vBLE is king (just ask the WiFi Ninjas 69)!
 - Easy to deploy, scalable, cost-effective and easy to manage
 - Bluetooth is standards-based
 - Bluetooth 5.1 brings Angle-of-Arrival and Angle-of-Departure for even greater accuracy
- Wi-Fi
 - 802.11az Next Generation Positioning
 - Still a lot of work to be done, years away
 - Wi-Fi location services requires very high density = \$\$\$\$\$

Mist Expands Vision of Universal Standards-Based Indoor Location

Robust Wi-Fi platform leverages IoT, ultra-wideband, radar, LiDAR, ESL, Wi-Fi and Bluetooth LE to deliver more use cases with scale and accuracy

NEW MIST PARTNERSHIPS FOR UWB RTLS!

- Various tags and sensors
- Flow analysis & heatmap
- API
- Planning tool

- 6000 tag reads per second
- Heatmap/spaghetti diagram software

- Various tags and sensors
- APIs & SDK

